

Published on Web 04/07/2010

One-Pot Enantioselective Extraction of Chiral Fullerene C₇₆ Using a Cyclic Host Carrying an Asymmetrically Distorted, Highly π -Basic Porphyrin Module

Yoshiaki Shoji, Kentaro Tashiro,* and Takuzo Aida*

Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received December 19, 2009; E-mail: TASHIRO.Kentaro@nims.go.jp; aida@macro.t.u-tokyo.ac.jp

Asymmetric recognition is one of the most important recognition events, for which a variety of chiral hosts have been developed to date.¹ However, there are particular types of chiral compounds whose optical resolution is essentially difficult. Representative examples include nonsubstituted chiral fullerenes that are devoid of asymmetric carbon atoms but possess only a distorted π -electronic surface.² Among such chiral fullerenes, C₇₆ is the smallest homologue that adopts an oval shape (Figure 1a).^{2b} On the basis of a report from Okamoto et al.,3,4b C76 with a small asymmetric distortion seems to be one of the most difficult chiral compounds for enantiomer separation. In fact, we attempted recycling chiral HPLC of racemic (\pm)-C₇₆, but no enantiomeric peak separation resulted even after 20 cycles (Figure S2).⁵ Although separation of its diastereoisomeric derivatives by chiral HPLC⁶ or kinetic resolution via asymmetric transformation⁷ has been reported, the results are not satisfactory. Here we report a novel π -electronic cyclic host (1_{2H} , Figure 1b) bearing a highly π -basic and asymmetrically distorted N-substituted porphyrin unit that can enantioselectively incorporate C76 in its cavity and furnish 7% enantiomeric excess (ee) in a single one-pot extraction.

Host $\mathbf{1}_{2H}$ possesses a meso-diaryl- β -octaethylporphyrin (\mathbf{P}_{2H}) unit on one side and its N-2-acetoxyethyl derivative ($P_{N-EtOAc}$) on the other. We have reported that cyclic host 3_{2H} , a non-pyrrole- β substituted version of 1_{2H} , and its rhodium complex 3_{Rh} are not enantioselective at all toward C76 under NMR conditions and therefore can accurately determine the enantiomeric purity of this chiral fullerene.^{4b,c} We anticipated that the enantioselection of C₇₆ may be realized by enhancing the π -basicity and distortion of the chiral porphyrin unit in the host. Thus, for the host design, pyrrole- β -substituted **P**_{2H} was chosen, since it is electron-rich and also nonplanar because of steric repulsion among the peripheral substituents.^{4a,8,9b} Hence, its N-substituted derivative (**P**_{N-EtOAc}) could be more π -basic and have a larger molecular distortion than the corresponding unit in 3. However, optical resolution of structually encumbered P_{N-EtOAc} by chiral HPLC was not successful. Meanwhile, we found that its chiral phlorin¹⁰ derivative (\mathbf{P}_{Phl}), an unexpected product in the attempted N-hydroxyethylation of lithiated P_{2H} with epoxyethane, can be separated into enantiomers.⁵ Moreover, stereoretentive conversion of P_{Phl} into $P_{N-EtOAc}$ was successful.⁵ Thus, compound 2_{2H} (Figure 1b) was synthesized using enantiomerically pure P_{Phl} and then converted into 1_{2H} .⁵

As shown in Figure 2a,¹¹ the enantiomers of $\mathbf{1}_{2H}$ (blue) clearly exhibited mirror-image circular dichroism (CD) spectra of one another, with a split Cotton effect in the Soret absorption region (400–430 nm). Notably, the CD intensity of $\mathbf{1}_{2H}$ was much larger than that of $\mathbf{3}_{2H}$ (black), suggesting its large molecular distortion caused by steric repulsion among the peripheral substituents.^{8,9b} When it was mixed with (\pm)-C₇₆ in toluene at 20 °C, $\mathbf{1}_{2H}$ displayed a bathochromic shift in the Soret absorption band from 412 to 416 nm.⁵ This spectral change is typical of metalloporphyrin cyclic

Figure 1. (a) Schematic representation of enantioselective complexation of C_{76} with a chiral host. (b) Molecular structures of chiral hosts 1_{2H} , 2_{2H} , and 3.

Figure 2. (a) CD spectra of the enantiomers of 1_{2H} (blue), 2_{2H} (red), and 3_{2H} (black) in toluene at 20 °C. (b) CD spectra of C_{76} extracted with 1_{2H} (blue) and 3_{2H} (black) along with that of an almost pure enantiomer of C_{76} (orange) as a reference. (c, d) ¹H NMR (500 MHz) spectra (selected region for *meso*-H) of 1:1 mixtures of (+)-host/(+)- C_{76} (blue), (-)-host/(+)- C_{76} (red), and (±)-host/(±)- C_{76} (black) in toluene- d_8 at 20 °C. The hosts for (c) and (d) are 1_{2H} and 2_{2H} , respectively. $[(+)-C_{76}] = [(\pm)-C_{76}]/4 = 7.7 \times 10^{-5}$ M.

dimers upon inclusion of fullerenes.^{4,9} Spectroscopic titration of (\pm) - $\mathbf{1}_{2\mathbf{H}}$ with (\pm) - \mathbf{C}_{76} in toluene at 20 °C gave an association constant K_{assoc} of 5.5 × 10⁶ M⁻¹, which is larger than that of $\mathbf{3}_{2\mathbf{H}}$ (2.5 × 10⁶ M⁻¹) but smaller than that of $\mathbf{3}_{\mathbf{Rh}}$ (1.5 × 10⁷ M⁻¹).^{4b,5} Next, we attempted enantioselective extraction of \mathbf{C}_{76} . At first, (+)- $\mathbf{1}_{2\mathbf{H}}^{11}$ was mixed with (\pm)- \mathbf{C}_{76} in toluene in a [(\pm)- \mathbf{C}_{76}]/[(+)- $\mathbf{1}_{2\mathbf{H}}$] molar ratio of 10, and the mixture was subjected to size-exclusion chromatography (SEC; Bio-Rad Bio-Beads S-XI) using toluene as the eluent. The first fraction containing the inclusion complex

(+)- $1_{2H} \supset C_{76}$ was collected and then chromatographed on silica gel with toluene as the eluent, where (+)- $\mathbf{1}_{2H}$ in the inclusion complex was protonated and released C76; this was isolated as the first fraction in 51% yield relative to (+)- $\mathbf{1}_{2H}$. As shown in Figure 2b (blue solid curve), the extracted C76 was CD-active, with enrichment of (-)-C₇₆ (the enantiomer with a negative-signed CD band at 400 nm). By reference to the $\Delta \varepsilon$ value of enantiopure C₇₆,^{4b} the ee was evaluated as 7.1%. Likewise, the use of (-)- $\mathbf{1_{2H}}^{11}$ in place of (+)- 1_{2H} for the extraction resulted in enrichment of (+)-C₇₆ in 7.0% ee (Figure 2b, blue broken curve). On the basis of the ee values of extracted C_{76} , the enantioselectivity of $\mathbf{1}_{2H}$ (i.e., the ratio of K_{assoc} for the favorable host/guest pair to that for the unfavorable one) was estimated as 1.17. The enantioselective inclusion of C76 with 1_{2H} was also confirmed by ¹H NMR spectroscopy. Because of the presence of conformational isomers due to its rigid cyclic structure,^{4,9} (\pm) -1_{2H} alone in toluene- d_8 at 20 °C showed a rather complicated spectral profile.⁵ For example, the *meso*-H displayed multiple singlet signals at 9.49–10.53 ppm.⁵ However, upon binding with (\pm) -C₇₆, the spectrum was simplified to give only a few *meso*-H signals at 10.05-10.36 ppm (Figure 2c, black).⁵ When (+)-C₇₆ was allowed to complex with (–)- $\mathbf{1}_{2H}$ or (+)- $\mathbf{1}_{2H}$ (Figure 2c), either of the two meso-H signals at 10.05 (red) and 10.06 (blue) ppm was observed. Therefore, in the upper spectrum (black) of Figure 2c, the signals at 10.05 and 10.06 ppm are assignable to $(-)-1_{2H} \supset (+)-C_{76}/(+) 1_{2H} \supset (-) - C_{76}$ and $(+) - 1_{2H} \supset (+) - C_{76}/(-) - 1_{2H} \supset (-) - C_{76}$, respectively. In conformity with the ee value observed for the extraction (Figure 2b), the integral ratio of these meso-H signals was 1.2. Likewise, the Ar-H and NH signals of (\pm) - $\mathbf{1}_{2H}$ in the presence of (\pm) - C_{76} were split diastereoisomerically.⁵

We also tested 2_{2H} as the potential host, since its chiral phlorin unit P_{Phl}, though nonaromatic, likely adopts a larger molecular distortion than $P_{N-EtOAc}$. In fact, successful X-ray crystallography of a phlorin compound identical to the P_{Phl} unit in 2_{2H} revealed a heavily distorted, nonplanar geometry.⁵ The deviation of the O-attached meso carbon atom from the mean plane defined by a dipyrrin moiety bearing a nonsubstituted sp² meso carbon atom is the largest among those reported for crystallographically defined phlorins.^{5,10} Accordingly, the CD spectra of the enantiomers of 2_{2H} (red) were quite different from those of 1_{2H} and 3_{2H} (Figure 2a). However, despite such a large distortion, the performance of 2_{2H} in enantioselection fell short of our expectations. The K_{assoc} value of $3.8 \times 10^5 \text{ M}^{-1}$, as determined by spectroscopic titration of (\pm) -2_{2H} with (\pm) -C₇₆ in toluene at 20 °C,⁵ was 1 order of magnitude smaller than that for 1_{2H} . Although the ¹H NMR spectral profile of the resulting inclusion complex was similar to that of (\pm) - $\mathbf{1}_{2H} \supset (\pm)$ - \mathbf{C}_{76} ,⁵ the *meso*-H signals of (\pm) - $\mathbf{2}_{2H}$ did not split diastereoisomerically (Figure 2d, black). Notably, authentically prepared $(+)-2_{2H} \supset (+)-C_{76}$ (blue) and $(-)-2_{2H} \supset (+)-C_{76}$ (red) displayed clearly distinguishable meso-H signals. Along with the small K_{assoc} value of $2_{2\text{H}}$ toward C_{76} , the nonsplitting feature observed for the meso-H signals of the inclusion complex (\pm) - 2_{2H} \supset (±)-C₇₆ (black) indicates a dynamic nature of their assembly.^{4b,c}

Enantioselective extraction of C_{76} was attempted using as references (+)-2_{2H}, (+)-3_{2H}, and (+)-3_{Rh},¹¹ the latter two of which have been reported to be nonenantioselective toward C_{76} under

NMR conditions.^{4b} We found that only (+)-**3**_{Rh} can extract C₇₆, as a result of the very high affinity of the rhodium porphyrin unit toward fullerenes.^{4b} However, the extracted C₇₆ displayed no detectable optical activity (Figure 2b, black). A possible drawback of non-pyrrole- β -substituted **3**_{Rh} is that its chiral *N*-methylporphyrin unit is not basic enough to interact with fullerenes proactively, so the inclusion of C₇₆ relies mostly on the high affinity of the achiral rhodium porphyrin unit. In contrast, chiral **P**_{N-EtOAc} in enantioselective host **1**_{2H} has an enhanced π -basic character due to the pyrrole- β substitution^{4a} and therefore plays a major role in trapping C₇₆.

In conclusion, we have succeeded in one-pot enantioselective extraction of (\pm) -C₇₆ using chiral porphyrin dimer $\mathbf{1}_{2H}$, where even a single extraction produced 7% ee. Control experiments with reference hosts indicated the importance of the high π -basicity and large asymmetric distortion of the $\mathbf{P}_{\mathbf{N}-\mathbf{EtOAc}}$ unit in $\mathbf{1}_{2H}$ for enantioselection of C₇₆. This host likely has great potential in HPLC as a chiral stationary phase for optical resolution of nonsubstituted chiral fullerenes. Its separation factor toward (\pm) -C₇₆, as estimated from the guest/host molar ratio and the optical purity of the extracted C₇₆, is $\alpha = 1.17$,⁵ which is, in general, large enough for achieving optical resolution of chiral componds without recycling.^{1c}

Acknowledgment. We thank Dr. M. Yamasaki of Rigaku Corporation for his generous assistance in crystal structure analysis. Y.S. thanks JSPS for a Young Scientist Fellowship.

Supporting Information Available: Preparation of 1_{2H} , 2_{2H} , and phlorin; analytical data for their mixtures with C_{76} ; and crystallographic data (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (a) Moberg, C. Angew. Chem., Int. Ed. 1998, 37, 248. (b) Pu, L. Chem. Rev. 1998, 98, 2405. (c) Ikai, T.; Okamoto, Y. Chem. Rev. 2009, 109, 6077. (d) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726.
- (2) (a) Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049. (b) Ettl, R.; Chao, I.; Diederich, F.; Whetten, R. L. Nature 1991, 353, 149.
- (3) Yamamoto, C.; Hayashi, T.; Okamoto, Y.; Ohkubo, S.; Kato, T. Chem. Commun. 2001, 925.
- (4) (a) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2004, 126, 6570. (b) Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2006, 128, 10690. (c) Shoji, Y.; Tashiro, K.; Aida, T. Chirality 2008, 20, 420.
- (5) See the Supporting Information.
- (6) (a) Hermann, A.; Rüttimann, M.; Thilgen, C.; Diederich, F. Helv. Chim. Acta 1995, 78, 1673. (b) Kissinger, R.; Crassous, J.; Herrmann, A.; Rüttimann, M.; Echegoyen, L.; Diederich, F. Angew. Chem., Int. Ed. 1998, 37, 1919.
- (7) Hawkins, J. M.; Meyer, A. Science 1993, 260, 1918.
- (8) (a) Konishi, K.; Miyazaki, K.; Aida, T.; Inoue, S. J. Am. Chem. Soc. 1990, 112, 5639.
 (b) Konishi, K.; Mori, Y.; Aida, T.; Inoue, S. Inorg. Chem. 1995, 34, 1292.
- (9) (a) Tashiro, K.; Aida, T.; Zheng, J.-Y.; Kinbara, K.; Saigo, K.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. **1999**, 121, 9477. (b) Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.; Aida, T.; Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. **2001**, 40, 1857. (c) Tashiro, K.; Aida, T. Chem. Soc. Rev. **2007**, 36, 189. (d) Yanagisawa, M.; Tashiro, K.; Yamasaki, M.; Aida, T. J. Am. Chem. Soc. **2007**, 129, 11912.
- (10) Sessler, J. L.; Zimmerman, R. S.; Bucher, C.; Král, V.; Andrioletti, B. Pure Appl. Chem. 2001, 73, 1041.
- (11) For 1_{2H} and 3, the symbols (+) and (-) denote the CD signs at their Soret absorption maxima. (+)- 2_{2H} and (-)- 2_{2H} represent the enantiomers of 2_{2H} that afford (+)- 1_{2H} and (-)- 1_{2H} , respectively.

JA910701Q